Water Treatment Chemicals from buzai232's blog

Algaecides are chemicals that kill algae and blue or green algae, when they are added to water. Examples are copper sulphate, iron salts, rosin amine salts and benzalkonium chloride. Algaecides are effective against algae, but are not very usable for algal blooms for environmental reasons.
The problem with most algaecides is that they kill all present algae, but they do not remove the toxins that are released by the algae prior to death.

Antifoams

Foam is a mass of bubbles created when certain types of gas are dispersed into a liquid. Strong films of liquid than surround the bubbles, forming large volumes of non-productive foam.
The cause of foam is a complicated study in physical chemistry, but we already know that its existence presents serious problems in both the operation of industrial processes and the quality of finished products. When it is not held under control, foam can reduce the capacity of equipment and increase the duration and costs of processes.
Antifoam blends contain oils combined with small amounts of silica. They break down foam thanks to two of silicone's properties: incompatibility with aqueous systems and ease of spreading. Antifoam compounds are available either as powder or as an emulsion of the pure product.

Powder
Antifoam powder covers a group of products based on modified polydimethylsiloxane. The products vary in their basic properties, but as a group they introduce excellent antifoaming in a wide range of applications and conditions.
The antifoams are chemically inert and do not react with the medium that is defoamed. They are odourless, tasteless, non-volatile, non-toxic and they do not corrode materials. The only disadvantage of the powdery product is that it cannot be used in watery solutions.

Antifoam Emulsions are aqueous emulsions of polydimethylsiloxane fluids. They have the same properties as the powder form, the only difference is that they can also be applied in watery solutions.

When referring to coagulants, positive ions with high valence are preferred. Generally aluminium and iron are applied, aluminium as Al2(SO4)3- (aluin) and iron as either FeCl3 or Fe2(SO4)3-. One can also apply the relatively cheap form FeSO4, on condition that it will be oxidised to Fe3+ during aeration.
Coagulation is very dependent on the doses of coagulants, the pH and colloid concentrations. To adjust pH levels Ca(OH)2 is applied as co-flocculent. Doses usually vary between 10 and 90 mg Fe3+/ L, but when salts are present a higher dose needs to be applied.www.iroatmp.com

Previous post     
     Next post
     Blog home

The Wall

No comments
You need to sign in to comment