Boiler drum level control from buzai232's blog

The drum level must be controlled to the limits specified by the boiler manufacturer. If the drum level does not stay within these limits, there may be water carryover. If the level exceeds the limits, boiler water carryover into the superheater or the turbine may cause damage resulting in extensive maintenance costs or outages of either the turbine or the boiler. If the level is low, overheating of the water wall tubes may cause tube ruptures and serious accidents, resulting in expensive repairs, downtime, and injury or death to personnel. A rupture or crack most commonly occurs where the tubes connect to the drum. Damage may be a result of numerous or repeated low drum level conditions where the water level is below the tube entry into the drum.Boiler Steam Drum

flow 1Some companies have had cracked or damaged water tubes as a result of time delayed trips or operators having a trip bypass button. When the drum level gets too low, the boiler must have a boiler trip interlock to prevent damage to the tubes and cracks in the tubes where they connect to the boiler drum. The water tubes may crack or break where they connect to the drum, or the tubes may rupture resulting in an explosion. The water tube damage may also result in water leakage and create problems with the drum level control. The water leakage will affect the drum level because not all the water going into the drum is producing steam.

Poor level control also has an effect on drum pressure control. The feedwater going into the drum is not as hot as the water in the drum. Adding feedwater too fast will result in a cooling effect in the boiler drum reducing drum pressure and causing boiler level shrinkage. This can be demonstrated by pouring tap water into a pan of boiling water.
Shrink and swell must be considered in determining the control strategy of a boiler. During a rapid increase in load, a severe increase in level may occur. Shrink and swell is a result of pressure changes in the drum changing water density. The water in the drum contains steam bubbles similar to when water is boiled in our homes. During a rapid increase in load, a severe rise in level may occur because of an increase in volume of the bubbles. This increased volume is the result of a drop in steam pressure from the load increase and the increase in steam generation from the greater firing rate to match the load increase (i.e., bubbles expand). If the level in the drum is too high at this time, it may result in water carryover into the superheater or the turbine. The firing rate cycle can result in drum pressure cycles. The drum pressure cycles will cause a change in drum level.
The firing rate change has an effect on drum level, but the most significant cause of shrink and swell is rapid changes in drum pressure expanding or shrinking the steam bubbles due to load changes. When there is a decrease in demand, the drum pressure increases and the firing rate changes, thus reducing the volume of the bubbles (i.e., bubbles get smaller). A sudden loss in load could result in high drum pressure causing shrinkage severe enough to trip the boiler on low level. A boiler trip at high firing rates creates a furnace implosion. If the implosion is severe enough, the boiler walls will be damaged due to high vacuum in the furnace.

Previous post     
     Next post
     Blog home

The Wall

No comments
You need to sign in to comment